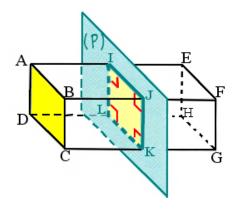
Professeur: Rachid BELEMOU

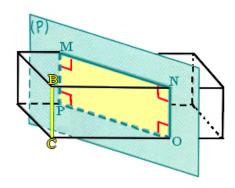
Lycée : Prince Moulay Abdellah

Cours Sections planes

Niveau: 3éme_Collège


Année : 2023-2024

1 Parallélépipèdes rectangles

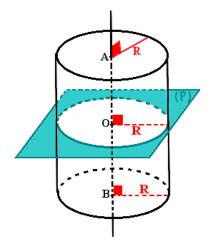

Propriété

La section d'un **parallélépipède rectangle** par un plan parallèle à une face ou une arête est un **rectangle** possédant une dimension commune avec le parallélépipède rectangle.

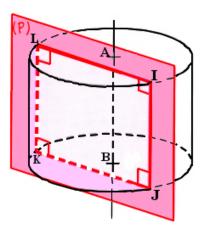
Exemples:

La section du pavé par un plan (P) parallèle à la face ABCD est le rectangle IJKL.

La section du pavé par un plan (P) parallèle à l'arête [BC] est le rectangle MNOP, de plus BC = MP = NO.


2 Cylindres

Propriété


La section d'un **cylindre** par un plan **perpendiculaire** à son axe est un **cercle** de même rayon que la base du cylindre.

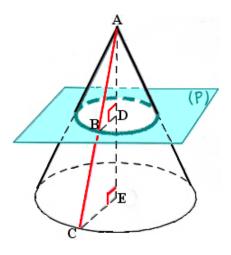
La section d'un **cylindre** par un plan **parallèle** à son axe est un **rectangle** dont l'une des dimensions est la hauteur du cylindre.

Exemples:

La section du cylindre par un plan (P) perpendiculaire à son axe (AB) est le cercle de centre O et de rayon R.

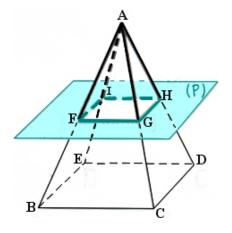
La section du cylindre par un plan (P) parallèle à son axe (AB) est le rectangle IJKL, de plus IJ = KL = AB.

Rappel:


Le **volume** d'un cylindre se calcule grâce à la formule : $\pi R^2 h$ où R désigne le rayon de la base du cylindre et h la hauteur du cylindre.

3 Pyramides et cônes de révolution

Propriété


La section d'une **pyramide** ou d'un **cône de révolution** par un plan **parallèle à sa base** est une **réduction de sa base**.

Exemples:

La section du cône de révolution par un plan (P) parallèle à sa base est donc un cercle, de plus on a :

$$\frac{AB}{AC} = \frac{AD}{AE} = \frac{BD}{CE}$$

La section de cette pyramide à base carré par un plan (P) parallèle à sa base est donc un carré FGHI, de plus :

$$\frac{AG}{AC} = \frac{AH}{AD} = \frac{GH}{CD} = \dots$$

<u>Vocabulaire</u>:

En regardant les figures dans le même sens que l'exemple, on nomme " \underline{cone} réduit" ou " $\underline{pyramide}$ réduite" la partie située au dessus du plan (P) et " \underline{tronc} de \underline{cone} " ou " \underline{tronc} de $\underline{pyramide}$ " la partie située en dessous du plan (P).

Rappel:

Le **volume** d'une pyramide ou d'un cône de révolution se calcule grâce à la formule : $\frac{\mathcal{A}_{\mathfrak{B}} \times h}{3}$ où $\mathcal{A}_{\mathfrak{B}}$ désigne l'aire de la base et h la hauteur.

Exemple d'application:

Avec le cône de révolution précédent, si AE = 12 cm et AD = 4 cm alors par définition, le coefficient de réduction est : $\frac{4}{12} = \frac{1}{3} < 1$.

Si l'on suppose que CE = 5 cm alors l'aire de la base du grand cône vaut $\pi \times 5^2 = 25\pi$ et le volume du cône vaut $\frac{\pi \times 5^2 \times 12}{3} = 100\pi$

Le petit cône étant une réduction de coefficient $\frac{1}{3}$, on sait alors d'après le chapitre "Thalès - agrandissement - réduction" que l'aire de la base du cône réduit est $25\pi \times \left(\frac{1}{3}\right)^2 = \frac{25\pi}{9}$ et le volume du cône réduit est $100\pi \times \left(\frac{1}{4}\right)^3 = \frac{25\pi}{16}$.

3